Turán Type inequalities for (p, q)-Gamma function

نویسنده

  • Faton Merovci
چکیده

have many applications in pure mathematics as in other branches of science. They are named by Karlin and Szegő in [8], Turán-type inequalities because the first of these type of inequalities was introduced by Turán in [18]. More precisely, he used some results of Szegő in [17] to prove the previous inequality for x ∈ (−1, 1), where fn is the Legendre polynomial of degree n. This classical result has been extended in many directions, as ultraspherical polynomials, Lagguere and Hermite polynomials, or Bessel functions, and so forth. Many results of Turán-type have been established on the zeros of special functions. Recently, W. T. Sulaiman in [15] proved some Turán-type inequalities for some q-special functions as well as the polygamma functions, by using the following inequality: Lemma 1.1. Let a ∈ R+ ∪ {∞} and let f and g be two nonnegative functions. Then ( a ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turán Type Inequalities for General Bessel Functions

In this paper some Turán type inequalities for the general Bessel function, monotonicity and bounds for its logarithmic derivative are derived. Moreover we find the series representation and the relative extrema of the Turánian of general Bessel functions. The key tools in the proofs are the recurrence relations together with some asymptotic relations for Bessel functions.

متن کامل

Higher Order Turán Inequalities for the Riemann Ξ-function

The simplest necessary conditions for an entire function

متن کامل

A note on Turán type and mean inequalities for the Kummer function

Article history: Received 20 June 2008 Available online 22 August 2008 Submitted by B.C. Berndt

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013